
S4P Users Guide

A guide for users of the Simple, Scalable, Script-Based, Science
Processor (S4P)

April 2008
Document Version 1.0.0

Chris Lynnes, NASA
Stephen Berrick, NASA

S4P Users Guide: Table of Contents

3/24/2008 2

Table of Contents

1. INTRODUCTION 5

1.1 DESIGN GOALS 5
1.1.1 SIMPLICITY 6
1.1.2 THE 80/20 RULE 6
1.1.3 "USE THE OS, LUKE!" 6
1.1.4 DESIGN-FOR-TROUBLE 6
1.1.5 TRANSPARENCY 6
1.1.6 KEEP THINGS TOGETHER 6
1.2 S4P FEATURES 6
1.2.1 STATIONMASTER 7
1.2.2 MONITORING STATIONS 7

2. ARCHITECTURAL OVERVIEW 8

2.1 ASSEMBLY-LINE PARADIGM 8
2.2 STATION COMPONENTS 8
2.2.1 WORK ORDERS 9
2.2.2 LOG FILES 10
2.2.3 STATION LOG 10
2.2.4 CHAIN LOG 10
2.2.5 PROCESSING CODE 11
2.3 PROCESSING A WORK ORDER 11
2.4 STATION MONITORING 13

3. S4P INSTALLATION 14

3.1 INSTALLATION REQUIREMENTS 14
3.2 BASIC INSTALLATION 14
3.3 CUSTOMIZED INSTALLATION 15
3.3.1 CUSTOMIZED INSTALLATION EXAMPLE 16
3.4 WHAT’S INCLUDED IN S4P? 16

4. STATIONMASTER 19

4.1 RUNNING STATIONMASTER 19
4.2 STATION CONFIGURATION BASICS 20
4.2.1 COMMANDS TO RUN (%CFG_COMMANDS) 20
4.2.2 DOWNSTREAM WORK ORDERS (%CFG_DOWNSTREAM) 22
4.3 PUTTING IT ALL TOGETHER 23
4.4 COMMON OPTIONAL STATIONMASTER PARAMETERS 23
4.4.1 STATION ROOT ($CFG_ROOT) 24
4.4.2 POLLING INTERVAL ($CFG_POLLING_INTERVAL) 25
4.4.3 STOP INTERVAL ($CFG_STOP_INTERVAL) 25
4.4.4 END INTERVAL ($CFG_END_JOB_INTERVAL) 26

S4P Users Guide: Table of Contents

3/24/2008 3

4.4.5 PROCESS DEADLINE ($CFG_DEADLINE) 26
4.4.6 STATION DISABLE ($CFG_DISABLE) 26
4.4.7 INPUT WORK ORDER SUFFIX ($CFG_INPUT_WORK_ORDER_SUFFIX) 26
4.4.8 OUTPUT WORK ORDER SUFFIX ($CFG_OUTPUT_WORK_ORDER_SUFFIX) 27
4.4.9 WORK ORDER PATTERN ($CFG_WORK_ORDER_PATTERN) 27
4.4.10 MAXIMUM NUMBER OF JOBS ($CFG_MAX_CHILDREN) 27
4.4.11 S4P USER ($CFG_USER) 28
4.4.12 S4P GROUP ($CFG_GROUP) 28
4.4.13 S4P UMASK ($CFG_UMASK) 28
4.4.14 S4P HOST ($CFG_HOST) 29
4.4.15 WORK ORDER SORT ($CFG_SORT_JOBS) 29
4.4.16 WORK ORDER TYPE RESERVATIONS (%CFG_RESERVATIONS) 30
4.5 COMMON OPTIONAL GUI PARAMETERS 31
4.5.1 STATION NAME ($CFG_STATION_NAME) 31
4.5.2 MAXIMUM JOB TIME BY WORK ORDER TYPE (%CFG_MAX_JOBTIME) 32
4.5.3 FAILURE HANDLERS (%CFG_FAILURE_HANDLERS) 32
4.5.4 STATION MANUAL OVERRIDES (%CFG_MANUAL_OVERRIDES) 33
4.5.5 STATION INTERFACES (%CFG_INTERFACES) 34
4.6 USEFUL, YET LESS COMMON OPTIONS 34
4.6.1 IGNORE EMPTY WORK ORDERS ($CFG_IGNORE_EMPTY_FILES) 35
4.6.2 IGNORE DUPLICATE WORK ORDERS ($CFG_IGNORE_DUPLICATES) 35
4.6.3 CASE-BASED REASONING LOG ($CFG_CASE_LOG) 35
4.6.4 MAXIMUM FAILURES ($CFG_MAX_FAILURES) 36
4.6.5 USE TOKENS (%CFG_TOKEN) 36
4.6.6 %CFG_AUTO_RESTART 37
4.7 OBSCURE OPTIONS 37
4.7.1 FAILED WORK ORDER DIRECTORY ($CFG_FAILED_WORK_ORDER_DIR) 37
4.7.2 STATION LOG FILE NAME ($CFG_LOGFILE) 37
4.7.3 STATION COUNTER LOG FILE NAME ($CFG_COUNTER_LOGFILE) 37
4.7.4 CHILD PROCESS SLEEP ($CFG_CHILD_SLEEP) 38
4.7.5 RENAME RETRIES AND RETRY INTERVAL ($CFG_RENAME_RETRIES,
$CFG_RENAME_RETRY_INTERVAL) 38
4.7.6 VIRTUAL JOBS (%CFG_VIRTUAL_JOBS, $CFG_VIRTUAL_FEEDBACK) 38

5. S4P GRAPHICAL USER INTERFACES 40

5.1 ANATOMY OF THE S4P MONITOR (TKSTAT.PL) 40
5.1.1 TITLE BAR 41
5.1.2 STATION BUTTONS 41
5.1.3 JOB BOXES 42
5.1.4 QUEUED, MAX, OK, AND FAIL TALLIES 43
5.1.5 CONTROL BUTTONS 43
5.1.6 ADDING CUSTOM CONTROL BUTTONS 43
5.1.7 COMMAND LINE OPTIONS 44
5.1.8 X RESOURCES 45
5.2 CONTROLLING STATIONS WITH STATION MONITOR 45
5.2.1 ANATOMY OF THE STATION MONITOR 47
5.3 CONTROLLING JOBS WITH JOB MONITOR 48
5.4 RELATIONSHIP BETWEEN STATION MONITOR AND JOB MONITOR 48

S4P Users Guide: Table of Contents

3/24/2008 4

6. APPLICATION TO AUTOMATED SCIENCE PROCESSING 49

6.1 SIMPLE PROCESSING 49
6.2 DEALING WITH COMPLICATED PRODUCTION RULES 50
6.3 FILE TRACKING 50

7. GETTING STARTED 52

7.1 CREATE YOUR S4P DIRECTORY STRUCTURE 52
7.2 CREATE YOUR STATION CONFIGURATION FILES 52
7.2.1 WORK ORDER / EXECUTABLE MAP 52
7.2.2 DOWNSTREAM WORK ORDER MAP 52
7.2.3 OTHER CONFIGURATION PARAMETERS 53
7.3 START UP STATIONMASTER DAEMONS. 53
7.4 SEED UPSTREAM STATIONS WITH WORK ORDERS. 53

8. DESIGNING STATIONS AND SYSTEMS 54

8.1 S4P MODULES FOR STATION CODE 54
8.2 SIMPLE FILTERS 56
8.3 SIMPLE PROCESS CONTROL FILES 56
8.4 COMPLEX PRODUCTION RULES 57

9. S4P APPLICATIONS 58

9.1 S4PM 58
9.2 S4PA 58

APPENDIX A. ACRONYMS 59

S4P Users Guide: 1. Introduction

3/24/2008 5

1. Introduction

Data processing costs too much. This fact was brought home during the development of
the systems to process data from the Terra platform. Integration of the science
algorithms has turned out to be more difficult than expected, leading to higher costs,
reduced capability and schedule slips. This has motivated an evolution in the Earth
Observing System Data Information System (EOSDIS) toward Science Investigator-led
Processing Systems (SIPS). In mid-1998, the Goddard Earth Sciences Data and
Information Services Center (GES DISC) began developing a simplified processing
system as a risk mitigation and a potential resource for future SIPS.

Many science processing systems have simply grown up around the algorithms they run.
Although simple and robust, they often are specific to the algorithm. On the other hand,
the EOSDIS Core System (ECS) was designed to be general, resulting in a large,
complex mix of commercial and custom software. Recent successful large systems
include the SeaWiFS Data Processing System and the TRMM Science and Data
Information System. While developed for specific disciplines, they are in fact relatively
easy to generalize to other algorithms. One thing that these have in common is the use of
commercial databases (often Sybase), and in most cases commercial system management
tools (e.g. AutoSys).

In contrast, many simpler systems, such as the EROS Data Center AVHRR 1KM system,
rely on a simple directory structure to drive processing, with directories representing
different stages of production. The system passes input data to a directory, and the output
data is placed in a "downstream" directory.

The GES DISC's Simple, Scalable, Script-based, Science Processor (S4P) is based on the
latter concept, but with modifications to allow varied science algorithms and improve
portability. It uses a factory assembly line paradigm: when work orders arrive at a
station, an executable is run, and output work orders are sent to downstream stations.

1.1 Design Goals

Based on the above premises, the following design goals were used in the development of
S4P as well as all the projects based on the S4P core (such as S4PM and S4PA):

S4P Users Guide: 1. Introduction

3/24/2008 6

1.1.1 Simplicity

In all code, a concerted effort must be made to keep it simple. Non-comment lines of
code should be kept as small as possible without becoming cryptic. (Comments, on the
other hand, should be used liberally.)

1.1.2 The 80/20 Rule

There is a rule of thumb that one often achieves 80% of the functionality with the first
20% of the effort. This tells us to move on to the next item when we have achieved that
80% functionality, coming back for more only if time permits.

1.1.3 "Use the OS, Luke!"

Years and years of development have gone into the operating system which is optimized
for the machine it is on. Thus, if you can use the operating system to achieve something
for you (e.g. files, directories, UNIX commands), do not bother to reinvent it. The only
exception is that if you know with absolute certainty that (a) the OS solution will not
meet performance requirements and (b) your solution will.

1.1.4 Design-For-Trouble

Things will go wrong in any system. Therefore, the design should have features to enable
troubleshooting built in from the start, not simply added on when things don't work. This
does not necessarily mean automated failure recovery, simply ensuring that human
operators can easily and quickly determine what has gone wrong.

1.1.5 Transparency

Following from the Design-for-Trouble principle, the operation of the system should be
as transparent as possible. That is to say, operational staff and sustaining engineers
should be able to see easily everything that is going on, the contents of data moving
hither and yon, etc. (This is the principle behind the use of work order files, rather than
socket messages, which can disappear into the ether.)

1.1.6 Keep Things Together

Troubleshooting is easier if everything (e.g., input, output, templates, configuration files,
logs, etc.) can be found in one place.

1.2 S4P Features

Below are listed a number of features of the S4P system.

S4P Users Guide: 1. Introduction

3/24/2008 7

1.2.1 Stationmaster

Stationmaster is the linchpin of the S4P. It has a number of configurable features to
provide the necessary flexibility to construct any arbitrary processing system.

• Adjustable polling interval
• Run different executables based on job type
• Child process limits

• Total number of running and failed children
• Number of running children
• Number of failed children (will stop forking jobs when too high)

• Send output work orders to multiple downstream stations
• Send output work orders to different downstream stations based on output job type
• Run a user-defined failure analysis program on job failure, based on input job type
• Maintain logs of the full history of a given work order (including logs for upstream

stations)
• Job sorting and prioritization:

• By work order name
• By arrival time (FIFO)
• By input job type
• By custom function

1.2.2 Monitoring Stations

Two tools, the S4P Monitor and the Job Monitor work together to monitor a system of
stations and control individual stations and jobs.

• Monitor a group of stations for running, failed and pending jobs
• Start and stop a station
• Job Control

• Terminate a job
• Suspend a job
• Resume a job
• Restart a failed job

In addition, station-specific scripts of various types can be developed and hooked into the
S4P Monitor and Job Monitor interfaces. This is done simply by associating a Button
name with a command-line executable in a configuration file.

• Failure Handlers work with failed job directories, providing a way to recover
from or otherwise handle a failure case. This is particularly useful for specific
cleanup tasks.

• Manual Overrides work with currently running directories. These are used, for
example, to release jobs that are waiting for something. (Note that this requires
the scripts to do some signaling to each other in the job directory.)

• Station-specific interfaces can be attached to any station, allowing access, for
example to additional GUIs.

S4P Users Guide: 2. Architectural Overview

3/24/2008 8

2. Architectural Overview

2.1 Assembly-Line Paradigm

The process of using science algorithms to create products is modeled as a factory
assembly line, with a number of stations along the way. Two key improvements on a
real factory are: (1) multiple instances of a job can be executed simultaneously at a given
station, and (2) the output can be sent to more than one downstream station
simultaneously.

Simply stated, a working station is a Unix or Windows directory with 2 key components:

1. A configuration file (normally named station.cfg). The two essential items in

the configuration file are a map of tasks to execute on arrival of input work orders,
and a map of downstream stations to which output work orders are sent.

2. A daemon monitoring the station for input work orders. A program called
Stationmaster (actually, stationmaster.pl) is provided for this purpose; all
that need be done is to start up a Stationmaster for each station.

Once the set of stations has been established and configured, the system is started by
running Stationmaster in each station of the system. When the first input work order is
deposited in the upstream station, the Stationmaster in that station does the following:

1. Detects the work order
2. Looks up the appropriate command to run for that work order type
3. Makes a temporary subdirectory for executing the job
4. Changes directory into the that subdirectory
5. Forks off a child Stationmaster process to run the command
6. When done, it looks up the output work orders in the downstream map
7. Sends work orders to the downstream stations

2.2 Station Components

A station in S4P is a directory within which a Stationmaster daemon is running. The
types of work orders that Stationmaster looks for and what it does are dictated by
configuration parameters in the station configuration file. By default, this file is named
station.cfg and this will be the assumption throughout this document. In addition, other
behaviors and characteristics of the station are set in the station configuration file such as
the name of the station that gets displayed in the graphical user interface, the polling
frequency, and many others. Section 4 on Stationmaster describes the options available in
the station configuration file.

S4P Users Guide: 2. Architectural Overview

3/24/2008 9

Beyond Stationmaster itself, there are several important components of S4P stations and
these are discussed below.

2.2.1 Work Orders

Work orders provide the input for a job in the station. Each work order is processed in
turn (there are ways of configuring the sort order). Work orders are placed in the station
by upstream stations or via some other mechanism outside of S4P. There are no
restrictions on the content of work order; it can be what ever the code running in the
station expects. By convention, however, work orders should be ASCII text files since
transparency is a major tenet of the S4P philosophy. If you see a work order in a station
directory, it either means that Stationmaster isn’t running or that the work order simply
hasn’t been processed yet.

By default work order file names have four components separated by a period character:
a prefix, a job type, a job identifier, and a suffix. Thus, work order file names have this
form:

<prefix>.<jobtype>.<jobid>.<suffix>

Work Order Name Component Description
Prefix By default, work order file names have DO as a prefix. See

Section 4.4 for options on overriding this default
Job Type The job type dictates what to run when a work order having

that type shows up in a station. It can be any ASCII string of
characters not including the period character (.). By
convention, job types are all in uppercase. Since job types
dictate what will be run, it is wise to keep job types short and
descriptive.

Job ID A job ID is used to guarantee uniqueness in work order file
names. Typically, it is the machine time or perhaps the
process ID. The only requirement is that it be unique for each
work order of a given type.

Suffix By default, work order file names have wo as the suffix (short
for “work order”). As with the prefix, Section 4.4 on
Stationmaster describes some ways to modify this default.

Table 2-1. S4P work order file name components.

2.2.1.1 Example Work Order Names

For example:

DO.IMPORT.398983.wo

has a job type of IMPORT and a job ID of 398983 (we presume that it is unique among
all work orders of type IMPORT).

DO.RUN_ALG1.2006123201030503.wo

S4P Users Guide: 2. Architectural Overview

3/24/2008 10

has a job type of RUN_ALG1 and a job ID of 2006123201030503 (which looks like a
timestamp).

2.2.1.2 What Goes Into a Work Order

S4P doesn’t actually care about what content there is in a work order. The only thing S4P
cares about is the name of the work order since that is how it decides what to run on it.
Empty work orders are perfectly valid too (though perhaps not useful).

2.2.2 Log Files

2.2.3 Station Log

There are several log files in S4P. By default, the Stationmaster in each station maintains
a log file named, by default, station.log (to override this, see Section 4.7.2). This file lists
out work orders processed and notes any failures. All messages are time tagged.

2.2.4 Chain Log

In addition, any output to standard out (stdout) and standard error (stderr) generated by
the commands running in the station (i.e. the processing code) is saved into a log file
whose name looks like the work order name with .log as the file name extension. For
example, if the work order name was:

DO.RUN_ALG1.4983.wo

the log file generated would be named:

RUN_ALG1.4983.log

Two functions are provided with the S4P distribution to facilitate logging of messages to
the chain log file. They are S4P::logger() and S4P::perish. The S4P::logger() function
takes two arguments. The first is a tag indicating the level of severity of the message
(valid choices are “INFO”, “WARNING”, “ERROR”, “FATAL”, and “DEBUG”) and
the second is the message string itself. The message written out to the log file will include
a timestamp and the name of the Perl script generating the message. Note that messages
tagged with “DEBUG” only get written if the environment variable OUTPUT_DEBUG
is set to non-zero; otherwise they are ignored.

The S4P::perish() function also writes out a message to the chain log file, but then exits
(dies) afterward. It also takes two arguments. The first is the exit status with which to exit
and the second is the message string. As with S4P::logger(), messages are written along
with timestamps and the scripts generating them.

If the processing in a station generates any output work orders destined for downstream
stations, the log file produced by the processing code gets moved downstream along with
the work order itself. New log messages will get appended to the log file. Thus, the log

S4P Users Guide: 2. Architectural Overview

3/24/2008 11

file grows as the work order with which it is associated is passed from station to station,
hence, the name “chain log”.

2.2.5 Processing Code

Of course, the most important component of any S4P system is the code that actually
carries out the processing in each of the stations making up a string. As suggested by
earlier examples, there are very few restrictions on what processing can be done in S4P.
Below are the assumptions that S4P processing code must meet:

1. S4P interprets an exit code of non-zero to be a failure and an exit code of zero to be

success. Thus, anything that S4P runs in a station needs to adhere to this convention.
2. The file name of the work order is automatically appended to the end of the command

being run. Thus, if the processing code is a script or compiled binary, it should be
prepared to receive the input work order as the last argument. There is no requirement
that the code actually open or read the work order; it can ignore it altogether.

3. For processing code that does read the input work order name, that file name follows
a convention described in Section 4. By default, input work orders have a ‘DO.’
prefix.

4. Processing code may generate one or more output work orders (or none at all). Output
work orders must have (by default) the ‘.wo’ suffix and must not have the ‘DO.’
prefix. See Section 4 for ways of changing this default.

5. There are no restrictions on the actual content of work orders. For the sake of
transparency (a tenet of S4P philosophy), ASCII work orders are much preferred over
binary.

6. Processing code needs to be aware that it is running within a unique subdirectory
below the station directory. This can be important if processing code needs to access
other files (aside from input work order) or directories. The unique subdirectory is
removed once the job completes, therefore, processing code cannot assume that the
job directory is permanent. If files (such as databases) need to be maintained across
runs, they should be placed in the station directory itself or nearby.

2.3 Processing A Work Order

When Stationmaster detects a work order in its station directory following the naming
convention discussed in Section 2.2.1, it creates a subdirectory with the name of the work
order prefixed with ‘RUNNING’. For example, the work order:

DO.IMPORT.200612140122.wo

would get a subdirectory named:

RUNNING.IMPORT.200612140122

That is, the job subdirectory name is taken from the work order name with the ‘DO’
prefix replaced by ‘RUNNING’ and the suffix ‘wo’ removed.

S4P Users Guide: 2. Architectural Overview

3/24/2008 12

Next, Stationmaster moves the work order into the new subdirectory created for it, but at
the same time dropping the ‘wo’ suffix. Thus, the work order within the job subdirectory
would actually be:

DO.IMPORT.200612140122

This is important to keep in mind since the process running in the station on the work
order needs to not expect the ‘wo’ suffix in the file name. It won’t be there.

Once the work order is in the job subdirectory, Stationmaster forks off a child
Stationmaster process to execute and monitor that job.

If the job fails, the subdirectory name prefix ‘RUNNING’ is changed to ‘FAILED’ as in:

FAILED.IMPORT.200612140122

This allows one to easily spot failures by simply doing a directory listing in a station
directory.

If the processing succeeds, there may be one or more output work orders generated as a
result. Output work orders must follow this convention:

<jobtype>.<jobid>.wo

as in:

RUN_ALGORITHM_1.200612140122.wo

This is somewhat opposite of input work order. For input work orders, the original ‘wo’
suffix is dropped, but the ‘DO’ prefix is kept. For output work orders, the original ‘DO’
prefix is dropped and instead the ‘wo’ suffix is kept. Processing code in stations that
generate output work orders need to keep this in mind when setting their file names.

Stationmaster will see to it that output work orders are passed on to downstream stations
(if any). We’ll see how to specify this later.

In summary:

Work Order Flavor Work Order Example
Work order in a station directory queued up to
be run.

DO.IMPORT.200612140122.wo

Input work order in a job subdirectory being
processed.

DO.IMPORT.200612140122

Output work order in job subdirectory after
processing has completed.

RUN_ALGORITHM_1.200612140122.wo

Table 2-2. S4P work order flavors and examples.

S4P Users Guide: 2. Architectural Overview

3/24/2008 13

2.4 Station Monitoring

Since a S4P processing string is nothing more than directories, subdirectories, and files, it
is very easy to monitor S4P processing by simply listing out the contents of station
directories. As an illustration, running the command:

ls –F import

on a fictitious Import station directory (in UNIX), might produce something like this:

import.pl*
station.cfg
station.lock
station.log
station.pid
station_counter.log
DO.IMPORT.2006121223221.wo
DO.IMPORT.2006121223342.wo
IMPORT.2006121223221.log
IMPORT.2006121223342.log
RUNNING.IMPORT.2006121222020/
RUNNING.IMPORT.2006121221821/
FAILED.IMPORT.2006121172927/

Immediately, one can see that there are two jobs running, one job has failed, and there are
two work orders representing two jobs queued up to be run. You probably have guessed
already that the import.pl file is a Perl script that is run to carry out the processing in our
imaginary Import station. The station.pid and station.lock files simply contain the process
ID of the Stationmaster process running in this station (some operating systems have a
preference for the PID file; others for the lock file). We have not yet talked about the
station_counter.log file.

If you were to change directories into the FAILED.IMPORT.2006121172927
subdirectory, you would see the debris left there at the time the job failed. By examining
the log files therein, hopefully the problem causing the failure could be resolved.

Because of the simplicity of this structure, it is fairly easy to develop a graphical user
interface (GUI) to display the state of multiple S4P stations comprising an S4P string at
any instant in time. In fact, S4P include a Perl/Tk implementation of just such a GUI. The
programs tkstat.pl and tkjob.pl will be discussed later in Section 5 on S4P interfaces.

S4P Users Guide: 3. S4P Installation

3/24/2008 14

3. S4P Installation

This section describes how to download and install S4P. This document is current as of
S4P 5.15.0.

S4P made available on SourceForge as part of the S4PM distribution at
http://sourceforge.net/projects/s4pm/.

3.1 Installation Requirements

S4P has been successfully installed on SGI machines running IRIX, Sun machines
running Solaris, and Linux machines running Red Hat. It should work on any UNIX
machine. S4P has also been tested successfully on a Window XP machine (using
ActiveState Perl), but the testing here has been very light and recent versions of S4P have
not been regression tested. We would appreciate hearing from those of you who have run
S4P under Windows.

S4P requires Perl 5.6.0 or later (it might work with earlier versions). It also requires the
Perl Tk module.

3.2 Basic Installation

There is only one package to download:

S4P-5.15.0.tar.gz

Download the package into some directory on the machine where you will install S4P.
Version 5.15.0 is assumed in the examples below. Adjust the version portion of the file
names according to the version you are using.

The directory you download this package into is only used for installing S4P and can be
removed later.

Unzip and untar the package file. On Linux, you can untar and unzip with one command:

tar xvzf S4P-5.15.0.tar.gz

On other UNIX machines, you may have to unzip and untar separately:

gunzip S4P-5.15.0.tar.gz && tar xvf S4P-5.15.0.tar

Unpacking this tar file will result in one subdirectory: S4P-5.15.0

S4P Users Guide: 3. S4P Installation

3/24/2008 15

Change directories into the S4P-5.15.0 directory:

cd S4P-5.15.0

For installation of the binaries into the standard system directories on your machine, run
the following:

perl Makefile.PL
make
make test (recommended, but optional)
make install
make clean (optional)

3.3 Customized Installation

You can choose to install S4P into a non standard location. This means that you will need
to specify where the binaries and Perl library modules go directly.

First, you’ll first need to set the environment variable PERLLIB (on Linux, use
PERL5LIB instead) to the alternate location of the libraries. Both the S4P and S4PM
libraries will need to be included (see example below) and you will need to set this
environment variable before you build S4P. The PERLLIB (or PERL5LIB) environment
variables will also have to be set correctly in order to run S4P. Finally, run the following
commands instead of the ones above:

perl Makefile.PL PREFIX=<alternate_directory>
make
make test
make install
make clean (optional)

where <alternate_directory> determines both where the binaries and libraries are to be
installed. The binaries (scripts and configuration files) will be installed in
<alternate_directory>/bin; the S4P libraries will be installed into
<alternate_directory>/lib/perl5/site_perl/perl5.x.x/. See example below.

Also, if you install the binaries into a non standard directory, the user account under
which S4P will be run will have to include this new location in the PATH environment
variable.

S4P Users Guide: 3. S4P Installation

3/24/2008 16

3.3.1 Customized Installation Example

For example, you wish to install the S4P binaries and libraries under /home/jdoe rather
than in the standard system directories. Follow these steps:

1. Log in as the S4P user that will run S4P.

2. Set the PERLLIB (it may be PERL5LIB if Linux) to where the libraries are to be

installed. For example (in Bourne, Korn, Bash shell or their variants):

export PERLLIB=/home/jdoe/lib/perl5/site_perl/5.8.3

3. Run the install:

perl Makefile.PL PREFIX=/home/joe
make
make test
make install
make clean (optional)

4. In the S4P user’s shell start up scripts (e.g. .bashrc), set the PERLLIB or
PERL5LIB environment variable as above and also set the PA environment
variable to include /home/joe/bin.

The S4P components will be installed into the directories as indicated in Table 3-1 below.

Component Installation Directory

Executable Scripts /home/jdoe/bin

Configuration Files /home/jdoe/bin

S4P Perl Library Modules /home/jdoe/lib/perl5/site_perl/perl5.8.5

Table 3-1. S4P components and where they would go if alternate location is set to /home/jdoe. Here,
we assume a Linux installation using Perl 5.8.5.

3.4 What’s Included in S4P?

S4P is comprised of Perl scripts (*.pl files) and Perl modules (*.pm files). Below is a
brief summary of most of what’s included. For more details on these and other script and
modules, read the man pages or look at the code itself.

S4P Users Guide: 3. S4P Installation

3/24/2008 17

S4P File Description

remove_job.pl Removes a failed job.

restart_job.pl Restarts a failed job.

s4p_repeat_work_order.pl Wrapper script that allows a station to automatically run a job
on a periodic basis by continually recycling work orders.

s4pshutdown.pl Shuts down all stations in a S4P string.

send_downstream.pl Sends a work order to the next station downstream.

stationmaster.pl Runs Stationmaster on a station to poll for incoming work
orders, start up processing on those work orders, and move
any output work orders downstream.

stop_station.pl Stops a station.

tkjob.pl Perl/TK GUI that allows a user to examine the contents of a job
directory.

tkstat.pl Perl/TK GUI that allows a user to visually monitor activity in
multiple S4P stations and perform troubleshooting.

Table 3-2. Some of the S4P scripts included.

S4P Users Guide: 3. S4P Installation

3/24/2008 18

S4P Module Description

S4P Main S4P Perl module with the core S4P functionality.

S4P::EDOS Contains functions for parsing Level 0 construction records that
adhere to the CCSDS format.

S4P::FileGroup Along with the S4P::FileSpec module, handles manipulations
of Product Delivery Records (PDRs), a type of file implemented
in Object Data Language (ODL), a precursor to XML. Used
mainly for sites running the EOSDIS Core System (ECS) or
interoperating with ECS via standard Science Investigator-Led
Processing Systems (SIPS) interfaces.

S4P::FileSpec See description for S4P::FileGroup.

S4P::Lexer Provides a generic lexer class.

S4P::MetFile Contains functions for manipulating ODL metadata files that
are used in the EOSDIS Core System (ECS).

S4P::OdlBlock,
S4P::OdlGroup,
S4P::OdlObject,

S4P::OdlTree

These modules are used for manipulating ODL metadata via a
data tree model.

S4P::PAN Contains functions for manipulating ECS-style Product
Acceptance Notifications (PANs).

S4P::PCF, S4P::PCFEntry Contains functions for manipulating ECS-style Process Control
Files (PCFs).

S4P::PDR Contains functions for manipulating Product Delivery Records
(PDRs).

S4P::ResPool Contains functions for creating and using a disk pool
management system, useful for S4P strings that need to
manage disk space. Allocation and de-allocation of disk pools
is provided.

S4P::S4PTk Contains functions used by S4P GUIs.

S4P::StaMon Module used by tkstat.pl for creating a station monitor object.

S4P::Subscription Contains functions for managing subscriptions for online data.

S4P::TimeTools Contains many time manipulation functions.

S4P::TkJob Module used by tkjob.pl for creating a job monitor object.

Table 3-3. Some of the S4P modules included.

S4P Users Guide: 4. Stationmaster

3/24/2008 19

4. Stationmaster

Stationmaster is the driver of S4P. Stationmaster monitors station directories for
incoming work orders, runs configured processing on those work orders, and moves any
output work orders to downstream stations that are monitored by their own
Stationmasters. The Perl code that implements Stationmaster is stationmaster.pl.

An instance of Stationmaster monitors only a single station where a station is simply a
directory containing, at a minimum, a station configuration file that dictates how the
Stationmaster should behave. By default, this configuration file is named station.cfg. If
there are a series of Stationmasters running on a series of stations and if these stations
pass work orders to one another, the group of stations is often referred to as an S4P
“string”.

4.1 Running Stationmaster

Stationmaster is run on the command line via this command:

stationmaster.pl &

In UNIX, the ampersand forces the process (stationmaster.pl, in this case) to run in the
background. By default, Stationmaster will monitor the current directory. That is, it
assumes that the current directory is the station directory and contains a station
configuration file named (by default) station.cfg.

To specify the station directory explicitly, use the –d option along with the full or relative
path to the station directory as in:

stationmaster.pl –d stations/import &

There are several more rather esoteric options available to Stationmaster and the
interested reader can discover them in the stationmaster.pl man page .

If there are more than several stations, typically one starts up the S4P Monitor and
through that interface starts up the individual stations. The S4P Monitor will be discussed
in Section 5.

S4P Users Guide: 4. Stationmaster

3/24/2008 20

4.2 Station Configuration Basics

In this section, the most basic station configuration file parameters are discussed:

Parameter Description Section
%cfg_commands What to run for each work order type 4.2.1
%cfg_downstream Where to send any downstream work

orders
4.2.2

Table 4-1. Basic station configuration file parameters.

4.2.1 Commands To Run (%cfg_commands)

The %cfg_commands is the most important parameter in the station configuration file
since it defines what to run for each work order type that is detected by Stationmaster. As
mentioned earlier, each station much be configured for particular work order types.

Work orders that have types other than those defined in the station configuration file will
be placed (by default) in a subdirectory under the station directory named
FAILED.WORK_ORDERS and will be visible through the S4P Monitor (Section 4) as a
red job box. If the entire pattern of the work order file name is not recognized, however,
it will be ignored.

The hash keys of %cfg_commands are work order types and the hash values are
commands that Stationmaster should run when a work order of that type shows up in the
station directory.

The work order itself is always automatically passed to the command as the last
argument.

Below is an example of how to use %cfg_commands:

%cfg_commands = (
 'IMPORT' => '../import.pl',
);

In the above example, Stationmaster is configured to execute ‘…/import.pl’ when ever a
work order of type IMPORT is detected. Remember though, the actual work order name
is passed implicitly as the last argument to what ever is set in this hash. It is up to the
script, import.pl in this case, to make use of the work order contents in whatever way is
appropriate (it can even ignore it). Thus, the actual command run is this:

../import.pl workorder_filename

where workorder_filename is the actual name of the work order. Such work orders
would look like this:

S4P Users Guide: 4. Stationmaster

3/24/2008 21

DO.IMPORT.3982989

Note that the .wo file name extension is missing. Why? The reason is that although work
orders by default all start with DO. and end with .wo, once the work order is moved into
a station subdirectory for running, the .wo file name extension is dropped by
Stationmaster. Thus, it is important that station scripts don’t rely on the .wo file name
extension because it won’t be there.

The command to run for a particular work order type doesn’t have to be a script or a
binary executable. It can be a UNIX command such as:

%cfg_commands = (
 'CLEAN' => "find /data -type f -mtime +8 -print -exec /bin/rm
{} \\; && echo'"
);

The above rather complicated command will run the UNIX find command to clean out
data files that order than eight days.

Also note that the executable, import.pl, is specified with a relative path (the ../). A
S4P tradition is to place station scripts (or symbolic links to them) in the station
directories. Since a job running in S4P runs in a subdirectory under the station directory,
the script is always one directory up. If, however, station scripts are locatable in the
user’s path, this is not necessary.

More than one work order type can be configured in a station. For example:

%cfg_commands = (
 'IMPORT' => '../import.pl',
 'RESYNC' => '../resync.pl –d ../database.db',
);

The station configured with the above setting will recognize two types of work orders and
run a unique task depending upon which type is detected. In each case, the work order
file is always passed as the last argument to the command. Thus, for a work order of type
RESYNC, the actual command run is:

../resync.pl –d ../database.db workorder_filename

Note that in this example, if a work order shows up in this station with, say, the name
DO.RUN.93839.wo, the basic pattern will be recognized by Stationmaster (it starts with a
DO and ends with a wo), but it will end up in the FAILED.WORK_ORDERS
subdirectory since its type is not defined in the %cfg_commands hash. If, however, a
work order with the name RUN.98393.wo shows up, it will be ignored since it doesn’t
even qualify as a bona fide work order (it’s missing the wo suffix).

S4P Users Guide: 4. Stationmaster

3/24/2008 22

4.2.2 Downstream Work Orders (%cfg_downstream)

After a station processes an input work order, it may generate one or more output work
orders to be sent to other stations. A station is not required, however, to generate any
output work order.

Stationmaster uses another hash in the station configuration file to decide where output
work orders go. Below is an example:

%cfg_downstream = (
 'RUN_ALG2' => ['../../run_algorithm_2'],
);

The above hash tells Stationmaster that output work orders of type RUN_ALG2 found in
the job directory after the processing has been completed successfully should be routed to
the station whose directory name is ../../run_algorithm_2. Note that since this is being
viewed from within a job subdirectory under the station directory, the relative path needs
to include the ../.. (this assumes that the run_algorithm_2 station directory is at the same
level as the current station directory. Later on, we’ll discuss a way of setting a default
station root so that this won’t be necessary.

It is up to the script running in a station to generate work orders of the correct type and
with the correct file names. Output work order file names must follow this convention:

<jobtype>.<jobid>.wo

Note that there is no DO. in front. Thus, given the definition of %cfg_downstream above,
a work order that looks like this:

RUN_ALG2.983983.wo

Stationmaster will detect this output work order, add the DO. suffix and move it into the
run_algorithm_2 station directory.

If a station generates more than one work order, it is easy to accomplish:

%cfg_downstream = (
 'RUN_ALG1' => ['../../run_algorithm_1'],
 'RUN_ALG2' => ['../../run_algorithm_2'],
);

It is also easy to send the same output work order to two or more downstream stations at
the same time:

%cfg_downstream = (
 'RUN_ALG1' => ['../../run_algorithm_1', '../../track'],
);

S4P Users Guide: 4. Stationmaster

3/24/2008 23

In the above example, the output work order RUN_ALG1 is sent to both the
run_algorithm_1 and track stations.

Output work orders can be sent to a plain old directory that isn’t a S4P station.
Stationmaster won’t care:

%cfg_downstream = (
 'RUN_ALG1' => ['../../run_algorithm_1', '../../ARCHIVE'],
);

Above, the RUN_ALG1 is sent to the run_algorithm_1 station as well as a directory
named ARCHIVE that, presumably, saves the work orders for future use.

4.3 Putting It All Together

Below is an example of a complete station configuration file using what we’ve learned so
far for a station named import. This station receives work orders of type IMPORT,
processes them with the script import.pl which outputs a work order of type RUN_ALG2,
which gets directed downstream to a station named run_algorithm_2. It is named
station.cfg.

%cfg_commands = (
 'IMPORT' => '../import.pl',
);
%cfg_downstream = (
 'RUN_ALG2' => ['../../run_algorithm_2'],
);

4.4 Common Optional Stationmaster Parameters

The only truly required parameter in the station configuration file is the %cfg_commands
hash. If a station produces no output work orders, the %cfg_downstream hash is not
needed.

In this section, we will discuss and provide examples for some common optional
parameters that are available for altering the behavior of Stationmaster.

S4P Users Guide: 4. Stationmaster

3/24/2008 24

Parameter Description Section

$cfg_root Sets station top-level directory. 4.4.1
$cfg_polling_interval Sets how often Stationmaster looks

for new work orders
4.4.2

$cfg_stop_interval Sets how often Stationmaster looks
specifically for STOP work orders

4.4.3

$cfg_end_job_interval Sets how often Stationmaster looks
specifically for END_JOB_NOW,
SUSPEND_JOB_NOW, and
RESUME_JOB_NOW work orders

4.4.4

$cfg_deadline Sets maximum time to run a job 4.4.5
$cfg_disable Disables or enables station 4.4.6
$cfg_input_work_order_suffix Sets the expected input work order

suffix
4.4.7

$cfg_output_work_order_suffix Sets the expected output work order
suffix

4.4.8

$cfg_work_order_pattern Sets the pattern of the entire work
order name

4.4.9

$cfg_max_children Sets the maximum number of jobs
that can be run concurrently

4.4.10

$cfg_user Sets the userid of the user that is
allowed to run the station

4.4.11

$cfg_group Sets the group of users that are
allowed to run the station

4.4.12

$cfg_host Sets the machine on which the station
is allowed to run

4.4.12

$cfg_sort_jobs Sets the method by which work
orders are ordered

4.4.15

%cfg_reservations Predefines number of work orders per
work order type that can run
concurrently

4.4.16

Table 4-2. Common optional station configuration file parameters.

4.4.1 Station Root ($cfg_root)

The $cfg_root parameter is an optional parameter that sets the root directory of the
stations. This allows one to set the %cfg_downstream hash like this:

$cfg_root = '../..';
%cfg_downstream = (
 'RUN_ALG2' => ['run_algorithm_2'],
);

rather than like this:

%cfg_downstream = (
 'RUN_ALG2' => ['../../run_algorithm_2'],
);

S4P Users Guide: 4. Stationmaster

3/24/2008 25

4.4.2 Polling Interval ($cfg_polling_interval)

The $cfg_polling_interval sets the Stationmaster polling interval in seconds. The default
is ten. That is, a Stationmaster will look for work orders every ten seconds. One reason to
increase the polling interval is if work orders are expected to show up in a station only
infrequently or with very long intervals of time in between. Although unnecessary polling
by Stationmaster has low overhead, on heavily loaded systems, this may be significant.

Very rarely will it make sense to lower the polling interval. If you do, be aware that
lowering the polling interval to about three seconds or less may result in “work order
poaching”. This happens when the time it takes Stationmaster to make a job subdirectory,
move the work order into that subdirectory, and fork off a Stationmaster to monitor that
job takes longer (on occasion) than the polling interval for that station. What happens is
that while Stationmaster is performing these steps, another polling takes place and the
very same work order is detected a second time (we’ve actually seen the same work order
get detected three times on a system with a very busy file system!). The result is that the
second polling will not find the work order between the time it notices it and the time it’s
ready to move the work order into the job subdirectory. It’s been poached! You end up
with a job subdirectory with no work order in it and the Stationmaster forked off for that
station fails. So, be cautious.

For example:

$cfg_polling_interval = 120;

4.4.3 Stop Interval ($cfg_stop_interval)

The $cfg_stop_interval is the number of seconds between polls of the station directory to
look for STOP work orders. The default is the $cfg_polling_interval.

Stopping a station in S4P is accomplished via a STOP work order being dropped into the
station directory. By default, a STOP work order will only be detected at the polling
frequency set for all work orders, the $cfg_polling_interval. When $cfg_polling_interval
is very large, stopping a station may take too long. Therefore, a separate more frequent
poll can be set up to look exclusively for STOP work orders. The polling interval is
$cfg_stop_interval.

For stations whose $cfg_polling_interval is the default (five seconds), it may not be
necessary to have a more frequent polling cycle for STOP work orders.

For example:

$cfg_polling_interval = 120;
$cfg_stop_interval = 5;

S4P Users Guide: 4. Stationmaster

3/24/2008 26

4.4.4 End Interval ($cfg_end_job_interval)

The $cfg_end_job_interval sets the number of seconds between polls of the Stationmaster
child process to look for END_JOB_NOW, SUSPEND_JOB_NOW, and
RESUME_JOB_NOW work orders. It works much the same way as $cfg_stop_interval,
but applies to the suspend and resume functions. This parameter is only relevant when
$cfg_group (Section 4.4.12) is specified; it is ignored otherwise. When $cfg_group is
specified, the default is $cfg_stop_interval (Section 4.4.3).

For example:

$cfg_end_job_interval = 3;

4.4.5 Process Deadline ($cfg_deadline)

The $cfg_deadline parameter is the number of seconds beyond which Stationmaster will
end the process that it is running. The default is no deadline. This can be useful in
stations where the processing should be quick and a significant slow down may indicate a
problem. It is recommended that the deadline be set well beyond the expected time to
avoid false positives in terms of real problems.

For example:

$cfg_deadline = 600;

4.4.6 Station Disable ($cfg_disable)

The $cfg_disable parameter simply enables or disables a station. If disabled,
Stationmaster will not run in that station and the S4P Monitor can be configured to not
display the station in the interface. Set $cfg_disable to zero to not disable the station (i.e.
enable it) and set to non-zero to enable. The default is enabled.

This parameter may be useful in more complex S4P strings to control what stations
participate in a string given some configuration.

For example:

$cfg_disable = 0;

4.4.7 Input Work Order Suffix ($cfg_input_work_order_suffix)

By default, input work orders are assumed to have the .wo file name extension or suffix.
To override this default with some other suffix, use the $cfg_input_work_order_suffix
parameter. For example:

$cfg_input_work_order_suffix = 'pcf';

S4P Users Guide: 4. Stationmaster

3/24/2008 27

In this example, a work order file named:

DO.RUN.98938.pcf

would get recognized by Stationmaster and run whereas a work order file named:

DO.RUN.98938.wo

would not.

The $cfg_input_work_order_suffix parameter applies to all work order types in this
station.

4.4.8 Output Work Order Suffix ($cfg_output_work_order_suffix)

The $cfg_output_work_order_suffix changes the default suffix on output work orders
from .wo to the value set here. For example:

$cfg_output_work_order_suffix = 'log';

Note that if used with work orders going to another station, the upstream station must be
configured to recognize such work orders via the $cfg_input_work_order_suffix.

4.4.9 Work Order Pattern ($cfg_work_order_pattern)

If merely changing the input work order suffix isn’t enough (see 4.4.5), the
$cfg_work_order_pattern allows one to change the entire default work order name
convention for input work orders. It doesn’t affect output work order names. This
parameter can be particularly useful when the work orders are actually files produced
outside of S4P. Set the parameter to a glob pattern that will match all input work orders
needed. For example:

$cfg_work_order_pattern = 'NEWDATA*.{PAN,PDRD}';

In this example, Stationmaster will look for work orders that start with NEWDATA
followed by the file name extension .PAN or .PDRD. A DO. prefix is not assumed and
not expected by Stationmaster in this case. Further, a .wo suffix is not assumed and not
expected. In fact, if either the DO. prefix or .wo suffix were included in the work order
name, Stationmaster would not see it.

4.4.10 Maximum Number of Jobs ($cfg_max_children)

By default, a Stationmaster will fork off a maximum of five jobs at a time in a station.
The $cfg_max_children can be used to increase or decrease the maximum number of jobs
(children) running in a station.

S4P Users Guide: 4. Stationmaster

3/24/2008 28

Setting $cfg_max_children to one effectively makes the station single-threaded. This
could be useful when processing needs to have exclusive locks on resources such as files
or databases.

If $cfg_max_children is to zero, rather than forking off a new Stationmaster child to run
the job, the parent Stationmaster runs the job itself.

For example:

$cfg_max_children = 10;

4.4.11 S4P User ($cfg_user)

The $cfg_user parameter sets the userid of the user authorized to run this station. If the
user attempting to bring up Stationmaster in this station isn’t the user set here,
Stationmaster will fail. This parameter can be useful in preventing inadvertent start-ups
of stations. But this should not be viewed as a security measure of any kind. For example:

$cfg_user = 'jdoe';

4.4.12 S4P Group ($cfg_group)

As an alternative to having an S4P station only run for a particular user (with $cfg_user),
a station can be configured to only run for a user belonging to a particular group. This is
done by setting $cfg_group rather than $cfg_user. When $cfg_group is set, Stationmaster
will check to see whether the current user is a member of the group specified. This same
checking is also done by TkJob.

For example:

$cfg_group = “s4p”;

4.4.13 S4P umask ($cfg_umask)

The $cfg_umask parameter is often used in conjunction with $cfg_group (4.4.12) to set
the umask of files written by Stationmaster. The default is 002 which doesn’t allow for
group readable/writeable files. Note that the specification must be octal.

Also, note that including –u umask when executing stationmaster.pl has the same effect.

For example:

$cfg_umask = 022;

S4P Users Guide: 4. Stationmaster

3/24/2008 29

4.4.14 S4P Host ($cfg_host)

The $cfg_host parameter prevents a Stationmaster from running if the host on which it is
being started up does not match the value set here. In S4P strings where some stations
may be mounts on other machines, this parameter can be useful in preventing a station
from being brought up on the wrong machine. For example:

$cfg_host = 'frodo';

4.4.15 Work Order Sort ($cfg_sort_jobs)

Stationmaster processes work orders by default in the same order defined by the shell for
listing work order file names. In some situations, it may be beneficial to set the sort order
to something else. S4P provides several ways of altering the default sort order

4.4.15.1 FIFO

To set the sort order to first-in-first-out, simply include this in your station configuration
file:

$cfg_sort_jobs = ‘FIFO’;

This can be useful in situation where it makes sense to process work orders in the order
that they show up. The FIFO sort order is particularly useful if groups of work orders
need to rendezvous in a particular station at roughly the same time.

4.4.15.2 Fixed Order By Job Type

To explicitly set the sort order by job type, simply list the job types in the order of
preference as in:

$cfg_sort_jobs = [
 'EXPORT',
 'EXPORT_EPD',
 'EXPORT_BROWSE',
 'EXPORT_PH',
 'EXPORT_FAILPGE'
];

In the example above, work orders of type EXPORT are given preference over work
orders of type EXPORT_EPD which have a higher preference than work order of type
EXPORT_BROWSE, etc. By default, the sort order would have been: EXPORT,
EXPORT_BROWSE, EXPORT_EPD, EXPORT_FAILPGE, and EXPORT_PH.

S4P Users Guide: 4. Stationmaster

3/24/2008 30

Such sorting may be handy to avoid “starving” work orders that process very quickly;
you would move them to the front of the list. Alternatively, you could change the work
order type name so that it naturally sorts the way you want.

4.4.15.3 Custom Sort Order Function

A third alternative is a custom written sort function. Simply place the Perl module
containing the function in the station directory. Refer to the man page on the Perl sort
function for a description of how the function must work. The same rules that apply for
Perl sort functions apply for these. Then, set the parameter to the function as in:

For example:

$cfg_sort_jobs = “MySort::sort_function”;

4.4.16 Work Order Type Reservations (%cfg_reservations)

The $cfg_max_children sets the maximum number of jobs that can run in a station. By
default, it is set to five. This parameter, however, doesn’t differentiate between work
order types; all are treated equally. The %cfg_reservations hash allows one or more job
types to reserve portions of the available job slots just for themselves.

If $cfg_max_children is greater than the total number of reservations so allocated, “walk-
ons” will be accepted into any extra slots.

For example:

$cfg_max_children = 8;
%cfg_reservations = (
 ‘ALLOCATE_MoPGE01’ => 1,
 ‘ALLOCATE_MoPGE02’ => 5,
);

In the example above, a maximum of eight jobs can be running at the same time. Five of
the six are reserved for job types of ALLOCATE_MoPGE02 and one is reserved for
ALLOCATE_MoPGE01. Since the $cfg_max_children is set to more than the total, two
slots are for walk-ons of either job type.

Note that if some job types do not have reservations specified, they can only be accepted
as walk-ons. Thus in this example, if a ALLOCATE_MoPGE55 work order showed up
(assuming the station was otherwise configured for it), it would only run when extra slots
became available.

Be sure to set the $cfg_max_children so that it is equal to or greater than the total number
of reserved job slots.

S4P Users Guide: 4. Stationmaster

3/24/2008 31

Note also that using reservations is functionally equivalent to creating separate S4P
stations, one for each job type needing a reserved number of job slots.

4.5 Common Optional GUI Parameters

Stationmaster isn’t the only part of S4P that looks at the station configuration files for
determining what to do and how to behave. The S4P Monitor (aka tkstat.pl and tkjob.pl)
also uses the same station configuration file to override defaults and provide options. This
section concentrates on those parameters in the station configuration file that affect the
S4P Monitor.

Parameter Description Section
$cfg_station_name Sets station name on button in S4P

Monitor
4.5.1

%cfg_max_job_time Sets time beyond which a job box will
change from green to yellow

4.5.2

%cfg_failure_handlers Associates job failure handlers with the
station

4.5.3

%cfg_manual_overrides Associates commands to run on running
jobs

4.5.4

%cfg_interfaces Associates station-level commands or
GUIs with the station

4.5.5

Table 4-3. Common station configuration file GUI parameters.

4.5.1 Station Name ($cfg_station_name)

The $cfg_station_name parameter sets the name of the station as it is to appear in the S4P
Monitor (tkstat.pl). It is not used by Stationmaster. For very small S4P deployments
where the S4P Monitor will not be used, this parameter is unnecessary. By default, the
S4P Monitor will display the station directory name on the Station buttons down the left
side of the interface. If $cfg_station_name is set, it will use the value set here.

For example:

$cfg_station_name = ‘Import Data’;

By tradition, station directory names are all in lowercase with underscore characters
separating words and their station name counterparts set with the $cfg_station_name
parameter are the same, but with mixed case and separated by spaces. Thus, the station
directory name corresponding to the above example would be: import_data. This is,
however, not enforced by S4P.

S4P Users Guide: 4. Stationmaster

3/24/2008 32

4.5.2 Maximum Job Time By Work Order Type (%cfg_max_jobtime)

The %cfg_max_jobtime parameter is a hash that allows one to preset the maximum
number of seconds (wall clock time) that a job processing a work order of a particular
type should run. This hash is used only by the S4P Monitor (tkstat.pl) and not by
Stationmaster. When a running job exceeds the time specified here, the monitor changes
the color of the job box from green to yellow. A yellow job is still a running job. The
purpose of this option is to allow those monitoring jobs in a S4P string to recognize when
a job is taking too long and may need to be investigated.

For example:

$cfg_max_jobtime = {
 'FIND_ALG1' => 100,
 'FIND_ALG2' => 100,
};

In the above example, jobs with work orders of type FIND_ALG1 and FIND_ALG2 are
given a maximum time of 100 seconds each. The implication is that jobs taking longer
than this to run are in trouble.

4.5.3 Failure Handlers (%cfg_failure_handlers)

Jobs in S4P sometimes fail by exiting with a non-zero exit code. As discussed earlier,
when a job fails, Stationmaster changes the name of the job’s subdirectory from
RUNNING.<jobtype>.<jobid> to FAILED.<jobtype>.<jobid>. This makes it easy for
one to see the failures and, hopefully, resolve the problems causing them.

In the S4P Monitor, a failed job is represented by a red box.

Just as clicking on a green running job box brings up the S4P Job Monitor (tkjob.pl) in
that running subdirectory, clicking on a red job box brings up the S4P Job Monitor in the
failed subdirectory. S4P can be configured to present the operator with actions to take
when a job fails. These actions are only offered to the operator when the job has already
failed. The GUI will not offer the action in a running job directory (there is another
option to handle that).

Actions that can be invoked on a failed job are configured for a station via the
%cfg_failure_handlers hash as in:

%cfg_failure_handlers = (
 'Remove Job' => 'remove_job.pl',
 'Restart' => 'restart_job.pl && remove_job.pl'
);

The hash keys are button labels that appear on in the S4P Job Monitor interface and the
hash values are those things to run when the action is invoked.

S4P Users Guide: 4. Stationmaster

3/24/2008 33

In the above example, when a job fails an operator will be presented with two options via
the S4P Job Monitor. One is to remove the job and the other is to restart it (presumably
after some fix was applied) and remove the failed one at the same time.

S4P comes with the remove_job.pl and restart_job.pl scripts. Other scripts or commands
can be easily added.

When developing custom made failure handlers, there are some things to keep in mind:

• The current working directory is the failed job directory. The failure handler
needs to assume this.

• It is completely up to the failure handler itself to move work orders (if any) to
other stations since Stationmaster isn’t running. When moving work orders,
remember the required naming convention that needs to be observed.

• It is also up to the failure handler itself to move the chain log to other stations.
Normally, Stationmaster handles this automatically, but again, it’s not running
here.

• Failure handles are free to examine any debris left by the failure to decide what to
do. This includes the input work order (which should still be in the directory) as
well as log and other files.

Note that failure handlers defined as such can be run without the S4P Monitor or S4P Job
Monitor by simply changing directories into the failed job directory and running the
handler on the command line.

4.5.4 Station Manual Overrides (%cfg_manual_overrides)

The %cfg_failure_handlers hash described above allows operator actions to be taken on
jobs that failed in S4P. What if you want to take some action on a job that is still running?
That is the purpose of the %cfg_manual_overrides hash. It allows something to be run in
a jobs running directory while the job is still running. The hash keys are labels for buttons
that will appear in the S4P Job Monitor interface and the hash values are the commands
to run. For example:

%cfg_manual_overrides = (
 'Expire Current Timer' => 'touch EXPIRE_CURRENT_TIMER',
 'Ignore Optional' => 'touch IGNORE_OPTIONAL',
 'Ignore Required' => 'touch IGNORE_REQUIRED'
);

In the above example, each of the actions taken is the creation of an empty file (via the
UNIX ‘touch’ command) in the job’s running subdirectory. In this case, we presume that
the job that is running polls periodically for these “signal” files and takes some action
depending upon which signal file it sees. This is just one example of the utility of
%cfg_manual_overrides.

As with failure handlers, keep in mind that the current directory of any manual override
you design is the running job directory.

S4P Users Guide: 4. Stationmaster

3/24/2008 34

4.5.5 Station Interfaces (%cfg_interfaces)

By default, right clicking on a station button in the S4P Monitor displays options for
starting or stopping the station. These same options are also visible via radio buttons in
the interface that comes up when you just click on a station button.

Through the station configuration file, other options can be added on a station-by-station
basis via the %cfg_interfaces hash. For example:

%cfg_interfaces = (
 'Restart All Failed Jobs' => 's4p_restart_all_jobs.pl'
);

In this example, the station is configured with an option to restart all failed jobs in the
station. This option shows up in addition to the start or stop option.

The s4p_restart_all_jobs.pl is included in S4P and it does exactly what it says: it simply
executes a restart_job.pl and remove_job.pl for all failures. This can be useful when there
is a simple glitch that causes many jobs to fail. Once fixed, rather than restarting each job
individually (by clicking on the red box and then on Restart Job), this item can be
selected from by right clicking on the station button.

Custom interfaces can be added easily. Unlike with failure handlers, custom interfaces
are run from within the station directory, not in any one job subdirectory. Keep this in
mind when designing your interface.

4.6 Useful, Yet Less Common Options

This section will discuss some of the less common configuration parameters that can be
set in the station configuration file.

Parameter Description Section
$cfg_ignore_empty_files Don’t fail if work order is empty 4.6.1
$cfg_ignore_duplicates Don’t fail if a work order is duplicated 4.6.2
$cfg_case_log Log certain messages in a case-based

reasoning log file
4.6.3

$cfg_max_failures Shut station down after a maximum
number of failures

4.6.4

%cfg_token Execute job only via tokens from a token
master station

4.6.5

%cfg_auto_restart Automatic restart of failed jobs 4.6.6

Table 4-4. Useful, yet less common station configuration file optional parameters.

S4P Users Guide: 4. Stationmaster

3/24/2008 35

4.6.1 Ignore Empty Work Orders ($cfg_ignore_empty_files)

This option tells Stationmaster to ignore recognized work orders that are zero bytes long.
Note, use this carefully since stations can legitimately be configured to use empty work
orders as “signal” files, that is, the work order triggers processing, but that processing
doesn’t require any information from the work order.

This parameter may be useful on systems with overloaded file systems that result in work
order poaching (see Section 4.4.2). Rather than causing failures, the empty work orders
are quietly ignored (they will be noted in the station’s log file, by default station.log).

Set to non-zero to enable; set to zero or leave out to disable. For example:

$cfg_ignore_empty_files = 1;

4.6.2 Ignore Duplicate Work Orders ($cfg_ignore_duplicates)

This parameter tells Stationmaster to ignore cases where duplicate work orders have
apparently been sent to the station. This can happen when file system response exceeds
the station polling interval ($cfg_polling_interval).

4.6.3 Case-Based Reasoning Log ($cfg_case_log)

The $cfg_case_log parameter enables or disables the logging of messages that can be
used to build case-based reasoning into a S4P. To enable, set to the location and file name
of the log file into which these messages will be written. Leave out or set to undef to
disable case-based reasoning logging. If multiple stations will be logging, a common log
file in the S4P root directory is recommended; all station configuration files can refer to
this single log file. For example:

$cfg_case_log = '/s4p/mystring/stations/cbr.log';

To find out information on what case based reasoning is, go to your favorite Web
browser and do a search. There is a lot of information out there, more than can be given
justice here.

Each entry in the case log file consists of up to seven items:

1 Timestamp – A time stamp, number of seconds since January 1, 1970
2 Message Type – ‘F’ for failure, ‘M’ for a manual intervention (e.g. killing a

job, restarting a job, or other manual override set in %cfg_manual_overrides)
3 Exit Code – Exit code from the failure (if applicable)
4 Station Name – Station involved (if applicable)
5 Job Type – Work order job type
6 Job ID – Work order job ID
7 Information – Additional information

S4P Users Guide: 4. Stationmaster

3/24/2008 36

As an example, here are a few lines from such a log file:

1154454319 F 9 run_algorithm RUN_MoPGE02 "Job Failed"
1154454327 R 0 run_algorithm RUN_MoPGE02 "remove_job.pl "
1154454334 R 0 run_algorithm RUN_MoPGE02 "remove_job.pl "
1154527983 M 0 reprocessing "Execution of [s4pshutdown.pl -r]
succeeded"
1154830881 M 0 find_data FIND "Execution of [touch EXPIRE_TIMER]
succeeded "

In order to take advantage of this logging, the scripts running within the S4P station must
invoke the S4P::log_case() function and provide it the information that is to be logged.
Since this function is in Perl, it can only easily be used by scripts written in Perl.

4.6.4 Maximum Failures ($cfg_max_failures)

The $cfg_max_failures sets the maximum number of failed jobs that can pile up in a
station before the station shuts down. It looks at the number of job subdirectories that
start with FAILED. Thus, failed work orders (work order types not recognized) that are in
the FAILED.WORK_ORDERS directory are not counted here.

The default is to allow an infinite number of failed jobs.

For example:

$cfg_max_failures = 20;

To limit maximum failures to particular job types while placing no limits on others within
a station:

$cfg_max_failures = {
 ‘SELECT’ => 5,
 ‘SELECT_ALL’ => 4,
};

4.6.5 Use Tokens (%cfg_token)

The %cfg_token parameter is a hash whose hash keys are job types and hash values are
the directories of the token master station responsible for providing run tokens to this
station. When used, a job will be spawned but will not begin executing until a token is
received.
Tokens are used in S4PM to allow a number of stations (within a string or among several
strings) to share CPU resources. For example, to have the Run Algorithm stations of two
S4PM strings on the same machine share CPU resources, you could set up a token master
station configured with the maximum number of tokens equal to the number of CPUs on
the machine. The token master station sends available tokens (a work order) to one of the
Run Algorithm stations. That Run Algorithm station executes a spawned, yet pending job
and then release the token back to the token master after the job is complete.

S4P Users Guide: 4. Stationmaster

3/24/2008 37

The token master station itself it not part of any one S4PM string. The script for the token
master station is s4p_token.pl.

4.6.6 %cfg_auto_restart

The %cfg_auto_restart can be used to automatically restart failed jobs of a given job type.
Stationmaster will first run a scout job to see if the “coast is clear.” If successful, all
failed jobs of the specified job type will automatically be restarted. This feature can be
useful in situations where problems may go away on their own without intervention (e.g.,
network congestion or remote server being down). The hash keys are the job types and
the hash value is itself a hash containing (for now) one element, the restart interval (in
seconds). This interval specifies how long to wait before attempting to restart jobs by
running a scout job; it should be relatively long.
For example:
%cfg_auto_restart = (

 ‘FTP_CONNECT’ => {‘interval’ => 3600},

 ‘FTP_PUSH’ => {‘interval’ => 86400},

);

4.7 Obscure Options

4.7.1 Failed Work Order Directory ($cfg_failed_work_order_dir)

By default, work orders whose types are not recognized end up in the
FAILED.WORK_ORDERS subdirectory (under the station directory). To change the
name to something else, use $cfg_failed_work_order_dir as in:

$cfg_failed_work_order_dir = ‘MISTAKES’;

4.7.2 Station Log File Name ($cfg_logfile)

By default, log file for Stationmaster is station.log. To change it to something else, use
$cfg_logfile as in:

$cfg_logfile = ‘messages.log’;

4.7.3 Station Counter Log File Name ($cfg_counter_logfile)

By default, Stationmaster logs information in a file named station_counter.log. This
information allows the S4P Monitor to keep track of the number of jobs that succeeded
and the number that failed since some point in time. To change the name of this file, use
$cfg_counter_logfile as in:

S4P Users Guide: 4. Stationmaster

3/24/2008 38

$cfg_counter_logfile = ‘counter.log’;

4.7.4 Child Process Sleep ($cfg_child_sleep)

When Stationmaster running in a station detects a work order to process, it forks off
another Stationmaster child process to monitor the execution of that work order. As a
default, the Stationmaster parent process sleeps two seconds after the job subdirectory is
created and the work order is moved into that directory before starting up the child
Stationmaster process. To change that default to something else, use $cfg_child_sleep.

Note, if $cfg_max_children is set to zero, no child Stationmaster process is started up in
the first place and therefore, this parameter has no impact.

$cfg_child_sleep = 3;

4.7.5 Rename Retries and Retry Interval ($cfg_rename_retries,
$cfg_rename_retry_interval)

The $cfg_rename_retries and $cfg_rename_retry_interval are parameters that allow
Stationmaster to make multiple attempts to renaming a RUNNING job subdirectory into
a FAILED job subdirectory. These are intended to get around cases where the rename
fails, but may succeed in a little while, such as when Windows holds onto file in the
directory a little too long.

The default for $cfg_rename_retries is zero (it only tries once) and the default for
$cfg_rename_retry_interval is five seconds. For example:

$cfg_rename_retries = 2;
$cfg_rename_retry_interval = 5;

In the above example, there will be two retries separated by 5 seconds in time.

4.7.6 Virtual Jobs (%cfg_virtual_jobs, $cfg_virtual_feedback)

The %cfg_virtual_jobs hash is used to create virtual work orders. Virtual work orders are
work orders created by Stationmaster itself rather than by another station or process. Such
work orders contain no content. They are merely used to initiate some processing and
they are recreated according to a set interval.

For %cfg_virtual_jobs, the hash values are the job types to create virtually and the hash
values are the number of jobs to maintain (as either running or in the queue to be run). As
an example:

%cfg_virtual_jobs = (
 'FOOBAR' => 2,
);

The above example will cause Stationmaster to maintain two jobs of type FOOBAR.

S4P Users Guide: 4. Stationmaster

3/24/2008 39

If $cfg_virtual_feedback is set, failed jobs will be counted along with running and queued
jobs for Stationmaster’s reckoning of jobs to maintain. For example:

$cfg_virtual_feedback = 1;

Using the %cfg_virtual_jobs, Stationmaster will create work orders named according to
DO.<jobtype>.<jobid>.wo where the <jobtype> is specified as the hash keys.

With this option, the station script should not generate output work orders as
Stationmaster will be doing this instead.

S4P Users Guide: 5. S4P Graphical User Interfaces

3/24/2008 40

5. S4P Graphical User Interfaces

For simple S4P installations with few stations processing a relatively few jobs,
monitoring can be done via a simple examination of directories, subdirectories, and file.
For larger system processing many jobs, this may be impractical. For this reason, a
simple graphical user interface (tkstat.pl, written in Perl/Tk) is provided in S4P for
monitoring. It simply displays the number of running and failed jobs in a station as well
as whether a station is currently “up” (has a Stationmaster daemon running) or “down”
(has no Stationmaster daemon running). An additional program, tkjob.pl, is invoked
by tkstat.pl to drilldown to the station or job level, allowing the operator to examine
configuration and log files, or even to start or stop stations.

Figure 3-1. Simple graphical user interface, tkstat.pl, used in S4P. This one displays four stations

(used as an example in a later discussion).

5.1 Anatomy Of The S4P Monitor (tkstat.pl)

The S4P Monitor is the main interface for monitoring activity and status of a S4P string.
The S4P Monitor updates the display on a configurable frequency. The default is ten
seconds. Figure 1-1 shows an example S4P Monitor implemented in the tkstat.pl Perl
script.
To start up the monitor as displayed in Figure 3-1, the following command was run from
the directory below which reside the four station subdirectories (should be on a single
line):
tkstat.pl -t 'S4P Monitor: Simple Processing String' import_data
run_algorithm_1 run_algorithm_2 archive_data &

In the sections below, each of the aspects of the S4P Monitor is discussed:

S4P Users Guide: 5. S4P Graphical User Interfaces

3/24/2008 41

5.1.1 Title Bar

The title bar at the top of the window is labeled S4P Monitor and also displays a name
that can be assigned on the command line when invoking tkstat.pl via the –t option.

5.1.2 Station Buttons

The station buttons run down the left side of the window and represent stations
configured to work in this S4P string. If the station button is red (not shown here), it
means that station is not running. If the station button is yellow (as with the Run
Algorithm 2 station), it means that there is an anomaly in that station, but that the station
is still running. Thus, despite the one anomaly, all stations in Figure 2-1 are running.
Although not shown in Figure 2-1, the S4P Monitor can be configured to display all
stations, even those not active for the current configuration. Such stations would be
shown as red, but with gray text to distinguish them from active stations that are simply
not running at the moment.
To have only active stations displayed in the S4P Monitor, include the –F option on the
command line to tkstat.pl.
Clicking on a station button brings up the Station Monitor window that will be discussed
below.
Right clicking on a station button is a shortcut to some of the things you can do in the
tkjob.pl Station Monitor such as stopping or starting the individual station. When you
right-click on a station button, a popup menu allows you to select these options as well as
any others configured for that station.

5.1.2.1 Station Anomalies

Station anomalies are caused by problems that are not severe enough for the station to be
turned off yet they do warrant investigation. Such stations turn yellow. This behavior is
triggered by any file detected in the station directory with the name:

ANOMALY-xxxx.log
where xxxx can be any string (any case, although upper case is shown here). For
example:
ANOMALY-BAD_FS.log

indicating a bad file system will cause the station button to turn yellow. The contents of
anomaly files is up to the application creating them. By default, S4P supports several
built-in anomalies:

S4P Users Guide: 5. S4P Graphical User Interfaces

3/24/2008 42

Built-In Anomaly Anomaly File Name Description

MAXFAIL ANOMALY-MAXFAIL.log Triggered when $cfg_max_failures is
exceeded.

SLOW_FS ANOMALY-SLOW_FS.log File system is slow. Detected by
unexpected zero-length work orders or
duplicate work orders

BAD_CONFIG ANOMALY-BAD_CONFIG.log An unrecognized work order type was
detected, one that ended up in the
FAILED.WORK_ORDERS
subdirectory.

BAD_PERM ANOMALY-BAD_PERM.log Bad permissions as recognized by
failure to write a virtual job work order.

Station scripts can add other anomalies freely simply by following the above file name
convention. Writing content to the anomaly file is optional (though perhaps useful). To
facilitate anomaly handling in station scripts, two functions are available:
S4P::raise_anomaly() and S4P::clear_anomaly(). For more information on how to use
these functions, refer to the documentation in S4P.pm.
To clear an anomaly (presumably after it has been investigated), the operator need only
select the anomaly file and then click on the “Clear Anomaly” button in the Station
Monitor. This causes the selected anomaly file to be deleted. The station will stay yellow
until all anomaly files have been cleared in this manner.

5.1.3 Job Boxes

Jobs running in each of the stations are represented with colored boxes to the right of the
station button. Green boxes are running jobs. Yellow job boxes (none shown here) also
are also running jobs but ones that have been running more than a configurable amount of
time; such jobs may be an indication of a problem worth investigating. Jobs waiting to be
run (in the queue) are represented with blue boxes. Jobs that have been suspended (and
waiting to be resumed, presumably) are represented in dark blue. Finally, jobs that have
failed are represented with red boxes.

In Figure 2-1, the Import station has five running jobs (green) and many other jobs
queued up waiting to be run (blue). The Run Algorithm 1 station has five running jobs
(green) and five queued jobs (blue). The Run Algorithm 2 station has two failed jobs and
the station button is yellow indicating that there is an anomaly condition in that station (it
could be the cause of the failures). The Archive station has several running jobs.
Each station is configured for the maximum number of jobs that can be run at the same
time. The default is five. Additional jobs that come into the station after the maximum is
reached are queued up and are displayed as blue boxes. In Figure 2-1, the Import station
is configured to only run the default of five jobs at a time. Thus, there are five green
boxes and the remaining jobs in the queue. Once one of the running jobs finishes or fails,
one of the queued up blue jobs will then be run.

S4P Users Guide: 5. S4P Graphical User Interfaces

3/24/2008 43

When a running job (green box) completes successfully, it disappears. If it fails, the box
turns red and remains there until some action is taken. A red box indicates that something
is wrong and should be tended to.
Jobs that have been suspended are shown in midnight blue (a darker blue than is used for
queued jobs). None are shown in this example.

5.1.4 Queued, Max, OK, and Fail Tallies

On the right side of the window are four columns that maintain current tallies of jobs that
are in the queue, the maximum number of jobs configured to run in the station, the
number of jobs that have completed successfully (OK), and the number of jobs that have
failed since the date and time listed on the since button. Clicking the since button resets
all tallies back to zero.

5.1.5 Control Buttons

At the bottom of the window are a number of S4P control buttons placed here for
convenience. By default, there is only a Refresh button and an Exit button. More buttons
carrying out useful functions, however, can easily be added via a configuration file
indicated on the tkstat.pl command line via the –c option.

5.1.6 Adding Custom Control Buttons

As mentioned in the previous section, custom control buttons can be added to the S4P
Monitor via the –c option when starting up tkstat.pl. The –c option takes the name of an
optional configuration file as its argument. This configuration file contains the single
hash %tkstat_commands where the hash keys are button labels and the hash values are
the associated actions that are to be invoked by clicking on the button. The maximum
number of user-defined buttons is six (in addition to the standard Exit and Refresh
buttons).

By default, the order of buttons as displayed in the S4P Monitor is random, but it can be
specified explicitly by prepending a number followed by a colon to the button names (see
example below). The number and colon will be stripped off when displayed. The order of
the buttons will be in number order. Note that the Refresh button is always displayed on
the far left and the Exit button on the far right; user-defined buttons are displayed in
between these.

An additional feature is that any button label containing the string “kill” will be displayed
with red text.

As an example, the hash below defines two buttons to start up and shutdown all stations.
The order will be random, but likely to be in the order shown. The new buttons will be
labeled on the display with the hash values shown and will be situated between the
Refresh and Exit buttons.

%tkstat_commands = (

S4P Users Guide: 5. S4P Graphical User Interfaces

3/24/2008 44

 'Start All => "cd /s4pm/test/stations; s4pstart.ksh",
 'Stop All' => "cd /s4pm/test/stations; s4pshutdown.pl",
);

To guarantee that the Start All button preceeds the Stop All button, you can do this:

%tkstat_commands = (
 '1:Start All => "cd /s4pm/test/stations; s4pstart.ksh",
 '2:Stop All' => "cd /s4pm/test/stations; s4pshutdown.pl",
);

If the file with the above hash is saved as tkstat.cfg, then it can be applied by running this
modified command to start up tkstat.pl:

tkstat.pl -t 'S4P Monitor: Simple Processing String' –c tkstat.cfg
import_data run_algorithm_1 run_algorithm_2 archive_data &

5.1.7 Command Line Options

The table below contains the full list of options for tkstat.pl, the S4P Monitor.

Option Description

-a appName Sets the application name as recognized by the X resources database.
This allows you to start it up with different X resource values.

-f font Sets the font for the interface; must be quoted if the font name begins
with a hyphen (as most do).

-m max_blocks Number of blocks or cells to display in each row of the display. The
default is 15.

-r refresh_rate Interface refresh rate. The default is 5 seconds.

-b Use bitmaps to display the job status. If this option is chosen, the
following default bitmaps are used:

FAILED –circle with a diagonal line through it

WARNING – exclamation mark

RUNNING – hourglass

PENDING – question mark

-t title Sets the title to display in the title bar of the interface

-c config_file Full pathname of the configuration file for adding in custom buttons. See
Section 5.1.6.

-R Make interface read only (e.g. for managers).

Table 5-1. List of all tkstat.pl options and their descriptions.

S4P Users Guide: 5. S4P Graphical User Interfaces

3/24/2008 45

5.1.8 X Resources

In addition to command line options, tkstat.pl also supports X resources from the useer’s
.Xdefaults or .Xresources file. Aside from the usual ones, the following are supported as
well:

Resource Description

failedColor Sets the color for display of failed jobs. Default is red (class
FailedColor)

pendingColor Sets the color for display of pending jobs. Default is RoyalBlue (class
PendingColor)

runningColor Sets the color for display of running jobs. Default is forest green or
#228b22 (class RunningColor)

warningColor Sets the color for display of late-running jobs. Default is yellow (class
WarningColor)

suspendedColor Sets the color for display of suspended jobs. Default is MidnightBlue
(class SuspendedColor)

failedBitmap Sets bitmap for failed jobs if –b option is set. Default is circle with a line
through it (class FailedBitmap)

pendingBitmap Sets bitmap for pending jobs if –b option is set. Default is a question
mark (class PendingBitmap)

runningBitmap Sets bitmap for running jobs if –b option is set. Default is an hourglass
(class RunningBitmap)

warningBitmap Sets bitmap for late-running jobs if –b option is set. Default is an
exclamation mark (class WarningBitmap)

maxBlocks Set the maximum number of jobs to display in a row. The default is 15
(class MaxBlocks)

Table 5-2. List of X resources supported by tkstat.pl and their descriptions.

5.2 Controlling Stations With Station Monitor

Clicking on a station button in the S4P Monitor brings up another window. An example
for an imaginary Allocate Disk station is shown below:

S4P Users Guide: 5. S4P Graphical User Interfaces

3/24/2008 46

Figure 5-2. Example S4P Station Monitor, in this case, for the run_algorithm_1 station.

The S4P Station Monitor is basically a view into the station's directory (remember, all
stations are just directories): the top panel has some buttons and controls, the middle
panel is a listing of the station directory's contents, and the bottom panel shows the
contents of the file selected from the middle panel. In this example, the station is Run
Algorithm 1 selected from our previous example. and the actual station directory's name,
run_algorithm_1, is shown in the title bar of the window. The contents of the file
highlighted in the middle panel, station.log, are shown in the bottom panel. In addition,
the search mechanism is also illustrated.

S4P Users Guide: 5. S4P Graphical User Interfaces

3/24/2008 47

5.2.1 Anatomy Of The Station Monitor

The Station Monitor is the interface to a particular station running in S4P. As with the
main S4P Monitor, the Station Monitor is updated periodically.

Below, each of the aspects of the Station Monitor is discussed:

5.2.1.1 Top Panel

The top panel of the Station Monitor contains buttons for controlling that station. These
are common to all S4P stations. These are:

Button Name Function

Refresh To update the display now rather than waiting
for the next polling cycle (default is 5 seconds)

Close To close the Station Monitor window

Start and Stop Radio Buttons To start or stop the station

Terminate To kill a running job. This button is only active
when a job is running; inactive otherwise.

Suspend and Resume Radio Buttons To suspend and resume a job. Suspend is only
available when a job is running and has a
function similar to Control-Z in UNIX.

Suspended jobs are represented as dark blue
in the S4PM Monitor.

Table 5-3. Station controls available in the Station Monitor window that are common across all
S4PM stations.

In addition to these controls, a number of station-specific control buttons may be
configured to carry out tasks unique to those stations. We’ve seen how to do this via the
station configuration file and the use of the %cfg_interfaces hash.

Note that the functionality of the Start and Stop Radio Buttons as well as any station-
specific interfaces is also available by right-clicking on the station button in the S4P
Monitor window. Thus, you don't have to bring up a new window to get access to these
controls. Any unique interfaces added to a station would be available in the same way.

Finally, the Display Control check boxes control the display of directory contents in the
middle panel.

5.2.1.2 Middle Panel

The middle panel is a display of the contents in the station directory including other
directories. Through this panel, you can navigate to other directories by double-clicking
on the name. For example, double-clicking on .. (the two dots) will bring you up one
directory.

A single click on a file will result in the contents of that file getting displayed in the
bottom panel. Only ASCII text files can be displayed along with Perl DBM files
(typically having a file name extension of .db). A single click on a directory will result in

S4P Users Guide: 5. S4P Graphical User Interfaces

3/24/2008 48

the contents of that directory getting displayed in the bottom panel. In this example, the
user has clicked on the file station.log which is highlighted. The contents of that file are
displayed in the bottom panel.

5.2.1.3 Bottom Panel

The bottom panel is used for displaying the contents of the file or directory highlighted in
the middle panel. If nothing is selected in the middle panel, the bottom panel will be
blank.
To help with diagnosing problems, any file name having the file name extension .log is
assumed to be a log file and the display of that file will automatically go to the bottom
where, most typically, the proximate cause of any problem can be found.

To facilitate troubleshooting, a rudimentary search button and entry box is provided. All
matches will be highlighted in color in the file shown in the bottom panel and the display
will jump to the first occurrence found. In this example, a search was done on the string
"RUN_ALG1".

5.3 Controlling Jobs With Job Monitor

Clicking on a running job (green box) or a failed job (red box) brings up the Job Monitor
window. The Job Monitor is essentially the same as the Station monitor, except that
rather than showing you the contents of a station directory, the Job Monitor shows you
the contents of a job directory (again, everything's just a directory). If the job is green and
still running, the contents of the directory are likely to be continuously changing. If the
job has failed, the contents are instead the debris left behind by the job's failure.

5.4 Relationship Between Station Monitor and Job Monitor

As indicated above, the Station Monitor and Job Monitor are essentially the same
window. The only distinction is the directory being viewed. If the directory is a station
directory, the interface is a Station Monitor; if the directory is a job directory within a
station directory, the interface is a Job Monitor. You can verify this yourself by bringing
up the Job Monitor on some running or failed job, then navigating in the middle panel to
one directory up (double click on the ..) into the station directory. Viola! The interface
will change from being a Job Monitor to a Station Monitor. The control buttons in the top
panel will even change appropriately. Furthermore, you can navigate back down to
another station directory. Again, the control buttons that show up will be those for that
new station (some may disappear, others may show up anew).

S4P Users Guide: 6. Application to Automated Science Processing

3/24/2008 49

6. Application to Automated Science Processing

Many science processing systems are data-driven, in the sense that incoming data triggers
the processing to be done. An example of this is the classic AVHRR 1 km system at
EDC. The alternative paradigm is that of planned processing, where plans of the
processing to be done are constructed before data arrival. The EOSDIS Core System
(ECS) exemplifies this approach. S4P is an example of the data-driven type (and is
indeed loosely based on the AVHRR system in concept.)

6.1 Simple Processing

Let us assume that an external data source is pushing data files to us. We will then
process each data file through an algorithm that produces a single output data file for
each input. We then process the output data file through a second algorithm that
produces a single output file for each input, and finish by archiving the second output.
Such a system might be implemented with only 4 stations (we’ve actually used this
example before):

Station What The Station Does

Import Data Detects the arrival of input data and passes the full pathnames on to
the Run Algorithm 1 station.

Run Algorithm 1 Runs the first algorithm, deletes the input data, and passes the full
pathname of the output data on to Run Algorithm 2 station.

Run Algorithm 2 Runs the second algorithm, deletes the input data, and passes the full
pathname of the output data to the Archive Data station.

Archive Data Saves the data to an archive.

Table 6-1. Four S4P stations that implement a simple processing scenario.

Import

Data

Run

Algorithm

#2

Run

Algorithm

#1

Archive

Data

Figure 6-1. Simple processing scenario.

This system assumes very simple production rules (i.e., one file in, one file out), and no
resource contention (i.e., more than enough disk space to go around. Figure 3-1 showed
how this simple scenario would be monitored via the S4P Monitor.

S4P Users Guide: 6. Application to Automated Science Processing

3/24/2008 50

6.2 Dealing with Complicated Production Rules

In practice, production rules can be quite complicated: ancillary files may be optional or
required; input files may be processed in groups; adjacent files may be needed for
averaging, and so on. In fact, the variety of production rules is potentially boundless. As
a result, such rules are not supplied as an intrinsic part of S4P (they are, however, an
intrinsic part of S4PM). Instead, they are implemented as stand-alone stations,
sometimes called triggering stations (Figure 6-2). In this case, the triggering station
collects information about all of the input files needed and passes that information to the
algorithm run station. As such, the program run in the triggering station can be arbitrarily
complicated and written in any language. It needs to fill only two criteria:

1. It is a standalone executable program (i.e., binary or script).
2. It outputs a file intelligible to the corresponding Run station.

Run

Algorithm

#1

Run

Algorithm

#2

Trigger

Algorithm

#1

Trigger

Algorithm

#2

Figure 6-2. Triggering stations.

Of course, the logic in the Trigger station could be prepended to that in the corresponding
Run station, thus halving the number of stations needed for the purpose. However, there
are two advantages to a separate Trigger station when the rules are complicated:

1. The complicated triggering logic is separated from the algorithm, producing a more

modular, maintainable system. Indeed, it can even be developed separately from the
main algorithm stations.

2. The triggering can be monitored separately from the algorithm execution, which is
helpful because the types of errors occurring in each one tend to be quite different.

The downside of the above approach in S4P is that if the production rules change for an
algorithm, the code implementing the trigger station will need to be modified or perhaps
rewritten. For simple processing situations where algorithms are relatively stable, this is
still a very cost effect approach.

On the other hand, S4P is the basis for S4PM which supports in a generic and rich set of
production rules along with data management and tracking. For more information on
S4PM, see http://s4pm.sci.gsfc.nasa.gov/.

6.3 File Tracking

Most complicated production rules tend to deal with the use of multiple files, sometimes
of different data types, but also occasionally groups of files of the same data type. For

S4P Users Guide: 6. Application to Automated Science Processing

3/24/2008 51

instance, the MODIS Level 1B (Calibration) algorithm processes an input Level 1A file
using the adjacent (leading and trailing) Level 1A files to average the calibration
information, as well as the corresponding Geolocation file. For such cases, it is also
important to track what files are available and whether they have been used for all of their
intended purposes.

File tracking can be implemented in a number of ways. The first main category is the use
of a database, either relational, DBM or otherwise. In this case, stations that make or
bring in data populate the database, while Triggering stations query it for available data
(Figure 3-3.)

Run

Algorithm

#1

Run

Algorithm

#2

Trigger

Algorithm

#1

Trigger

Algorithm

#2

File

Tracking

Database

Import

Data
Archive

Data

Figure 6-3. Database implementation of file tracking.

Alternatively, a station can be used to track the files in the system. In this case, all file
creations or updates generate work orders which are sent to the File Tracking station.
"Queries" are accomplished by sending work orders with placeholders to the this station,
which fills them in with the necessary file pathnames.

Run

Algorithm

#1

Run

Algorithm

#2

Trigger

Algorithm

#1

Trigger

Algorithm

#2

File

Tracking

Station

Import

Data
Archive

Data

Figure 6-3. Station implementation of file tracking.

S4P Users Guide: 7. Getting Started

3/24/2008 52

7. Getting Started

7.1 Create your S4P directory structure

Just use the mkdir command in either Unix or Windows to do this. It’s a good idea
(though not essential) to create all of the directories in a subdirectory of their own. Don’t
worry about the space used by these; the data that are processed need not be on the same
disk, though it should be accessible from this area.

In designing your directory structure, you will need to make decisions about “lumping”
tasks vs. “splitting” tasks. It can be simpler (especially in the beginning) to lump tasks
together into a small number of stations (e.g., by having a script run them in sequence).
On the other hand, this limits your ability to see what is going on within the “lump”, as
the monitoring granularity is at the station level. However, it makes sense to lump two
tasks when one of those is a highly routine operation that is unlikely to break down.

If you have a Data Flow Diagram (DFD) or Object diagram describing your processing
system, it often makes sense to have one station per process or object.

7.2 Create your station configuration files

The station configuration file lives in the station directory. The default name for the file
is station.cfg, although the Stationmaster can be brought up with different file
names using the command line arguments (man stationmaster.pl for more
details).

7.2.1 Work Order / Executable Map

Typically, a station runs only one thing. But it may run several. For each thing you want
to run in a station, come up with a work order type. The type can be arbitrary, but it
should be something that conveys what type of processing is being done. Thus, in our
earlier example, the work order type IMPORT makes sense for an import station.
Likewise, the work order type RUN_ALG1 makes sense for the Run Algorithm 1 station.
The decisions you make here determine how to specify the %cfg_commands hash in the
station configuration file.

7.2.2 Downstream Work Order Map

In general, a station generates output work orders destined for downstream stations. So,
the next step is to decide the work order types of those output work orders. You should
give them names that convey the type of processing that will be done in those
downstream stations and, of course, they need to match what those downstream stations

S4P Users Guide: 7. Getting Started

3/24/2008 53

are configured to accept. This determines how to specify the %cfg_downstream hash in
the station configuration file.

7.2.3 Other Configuration Parameters

Station configuration file parameters were discussed in Section 4. Now is the time to
decide, for each station, what of those parameters make sense. Typically, if you plan on
using the S4P Monitor, a nice station name is desirable, that is, $cfg_station_name. Also,
to simply configuration, the $cfg_root parameter is useful.

Here's an example from the S4P system processing MODIS Direct Broadcast data:

$cfg_station_name = "Run L1A";
$cfg_root = '/usr/modis/db/s4p/';
%cfg_commands = ('MOD00' => 'perl ../run_pge.pl -l 150 -a 1 -o
/usr/modis/db/data/1');
%cfg_downstream = ('MOD01' => ['mod_pr03']);

7.3 Start up Stationmaster daemons.

You can do this manually, by running stationmaster.pl (from the command line or in a
script), or using the tkstat.pl monitor, by clicking the button for a station (a red
background means it is not currently running), and clicking the Start button in the
resulting popup screen for that station. Note however, that the person who starts up a
Stationmaster is the only one who can stop it (aside from the system administrators).

7.4 Seed upstream stations with work orders.

There are three ways of doing this:

1. For data-driven processes, an S4P station can often be set up for the directory where

the data (or some signal file or delivery record) come into the system. This often
involves a special setting in the configuration file to recognize these “foreign” work
orders, as they do not follow the normal DO.<job_type>.<job_id>.wo pattern.

2. An alternative for data driven processes is to have a program outside of S4P detect
the arrival of data and create a work order for the first upstream station. Such a
program may be a run via cron job, triggered by email filter, or forked off by inetd.

3. For ad hoc processing, such as reprocessing, a user interface is used to select the data
input for the processing stream and then output the work orders to start the stream
processing.

S4P Users Guide: 8. Designing Stations and Systems

3/24/2008 54

8. Designing Stations and Systems

This section discusses the various options for setting up stations, along with some simple
examples.

8.1 S4P Modules For Station Code

S4P includes a number of Perl modules containing many functions that can be used in
station code that you write. These are Perl modules, thus we assume here that the scripts
making use of them are Perl. Note that the use of the functions and modules described
below is completely optional; none have to be used.

S4P Users Guide: 8. Designing Stations and Systems

3/24/2008 55

S4P Perl
Module

Description

S4P.pm Master module for S4P. For those writing station scripts in Perl, these
functions may be particularly useful:

• S4P::exec_system() – Executes a system command with error
processing.

• S4P::logger() – Outputs a message to STDERR in a fixed format.

• S4P::perish() – Replacement for die() that calls S4P::logger() before
exiting.

• S4P::raise_anomaly() – Raises an anomaly by writing a signal file of
the given type to the station directory.

• S4P::clear_anomaly() – Clears (deletes) a raised anomaly

• S4P::restart_job() – Copies all log files and work orders up one
directory (so that Stationmaster will see the work order and start the
job again).

• S4P::remove_job() – Removes all files from a failed job directory
and deletes the directory.

• S4P::stop_station() – Shuts down a station

• S4P::snore() – Like sleep() except that it is noisy. It writes a sleep
message file.

• S4P::repeat_work_order() – Copies the input work order name to its
output work order form thereby allowing a suitably configured station
to recycle the job.

FileGroup.pm,
FileSpec.pm

These modules contain functions for parsing and manipulating Object Data
Language (ODL) formatted files such as Product Delivery Records. These
modules specifically support work orders written in ODL format. This is a
format well-known to those familiar with the EOSDIS Core System (ECS).

FileGroup.pm implements a FILE_GROUP object of a PDR where a
FILE_GROUP is a group of related files (e.g. Science, Metadata, Production
History, and Browse) that make up a data granule. The individual files in the
FILE_GROUP are FILE_SPEC objects.

TimeTools.pm Many functions that parse and manipulate time/date strings.

PCF.pm,
PCFEntry.pm

These modules handle ECS-style Process Control Files (PCFs) which has
its legacy in algorithms run within ECS. PCFs are used a the work order
format in many S4P applications, including S4PM.

ResPool.pm Module for handling resource pool allocations in a DB_FILE database.

S4P Users Guide: 8. Designing Stations and Systems

3/24/2008 56

8.2 Simple Filters

Perhaps the simplest station is a filter, that is a program that takes a single input file
(usually from standard input) and produces a single output file (usually standard output).
An example is the Unix sed command. The syntax from the command line is usually:

 command < input > output

In an S4P station, however, we anticipate running the same command many times, with
different input files, and thus different output files. Therefore, in addition to invoking the
command, we must be able to generate the output filename automatically, using say, the
time or process_id, or more commonly, a permutation of the input name. One way to do
this is to wrap the command in a shell or Perl script.

The following example, lets call it run_foobar.pl, runs the command foobar, using input
files with the pattern INPUT_xxx.dat and producing output files with the pattern
OUTPUT_xxx.dat.

#!/usr/bin/perl
$infile = $ARGV[0];
$outfile = $infile;
$outfile =~ s/INPUT/OUTPUT/;
system(“foobar < $infile > $outfile”);

The station configuration file (station.cfg) would thus have the following line:

%cfg_commands = (‘INPUT*.dat’=>’../run_foobar.pl’);

In this case, run_foobar.pl is assumed to be in the station directory. The ‘../’ prefix
is used because each individual job will be run in a subdirectory created specifically for
that job.

This type of script can be used for a number of basic processing setups of the filter type.
Note that static arguments could be added to the foobar command simply by adding them
to the script. For example:

system (“foobar –r < $infile > $outfile”);

8.3 Simple Process Control Files

While simple filters are adequate for many cases, most science algorithms have too many
tunable parameters to run with as a simple filter. Often, this problem is solved by process
control files. These can vary from simple parameter=value files to large, complex files
with specialized syntax, like the ECS Process Control Files. One way to deal with these
is to generate a process control template, with all parameters filled in except the input file
and output file. Placeholders for the input file and output files (e.g.

S4P Users Guide: 8. Designing Stations and Systems

3/24/2008 57

INSERT_INPUT_FILE_HERE and INSERT_OUTPUT_FILE_HERE) are then replaced
by the station’s script on execution:

#!/usr/bin/perl
$template_file = ‘../pcf_template’; # Template is in station directory
open TEMPLATE, $template_file or die “Cannot open $template_file: $!”;
open PCF, ‘>temporary.pcf’ or
 die “Cannot open temporary.pcf for writing: $!”;
Generate output filename
$output_file = $ARGV[0];
$output_file =~ s/INPUT/OUTPUT/; # Assumes input file is INPUT_xxx.dat
while (<TEMPLATE>) {
 # Input file is the argument to this script
 s/INSERT_INPUT_FILE_HERE/$ARGV[0]/;
 s/INSERT_OUTPUT_FILE_HERE/$output_file/;
 print PCF;
}
close TEMPLATE;
close PCF;
system(“foobar.pl temporary.pcf”);

8.4 Complex Production Rules

S4P does not have complex production rules built in. However, production rules of
arbitrary complexity can be implemented through the use of a triggering station. This is a
station whose sole purpose is to create a Process Control File, with all the necessary input
and output files filled in. Such a script may access databases or perform complex
calculations. Indeed, it may even be an executable binary compiled from C or Fortran.
The key criteria for generating such a script are:

(1) It executes using a file as input (i.e., the input work order)
(2) It generates a full-featured process control file, all the information needed for the

science algorithm to run
(3) It is self contained, in that with the information in (1) it can generate the process

control file on its own

S4P Users Guide: 9. S4P Applications

3/24/2008 58

9. S4P Applications

S4P is currently being used for a number of applications at the GES DISC. These are
described below.

9.1 S4PM

S4P is the core of the Simple, Scalable, Script-Based, Science Processor for
Measurements (S4PM). S4PM comes with already built station code and supports a rich
set of production rules. It supports data driven processing as well as on-demand and the
Near Archive Data Mining (NADM) system. S4PM has been doing all of the science
processing at the GES DISC for four years and has expanded greatly during that time
period. S4PM is available on SourceForge at http://sourceforge.net/project/s4pm/.

9.2 S4PA

S4P is also the core of the Simple, Scalable, Script-Based, Science Product Archive
(S4PA). S4PA is a data archive management and distribution system for disk-based
archives. It currently support about a 400 TB archive at the GES DISC. For more
information, see this Website: http://disc.gsfc.nasa.gov/techlab/s4pa/index.shtml.

S4P Users Guide: A. Acronyms

3/24/2008 59

Appendix A. Acronyms

Acronym Meaning

AIRS Atmospheric Infrared Sounder

AVHRR Advanced Very High-Resolution Radiometer

CPU Central Processing Unit

DFD Data Flow Diagram

DISC Data and Information Services Center

ECS EOSDIS Core System

EOSDIS Earth Observing System Data Information System

GES Goddard Earth Sciences

GFLOPS Giga FLOPS (Floating Operations Per Second)

GSFC Goddard Space Flight Center

GUI Graphical User Interface

HRPT High Resolution Picture Transmission (AVHRR)

MODIS Moderate Resolution Imaging Spectroradiometer

ODL Object Description Language

S4P Simple, Scalable, Script-Based, Science Processor

SeaWiFS Sea-viewing Wide Field-of-view Sensor

SIPS Science Investigator-Led Processing System

TB Terrabytes

S4P Users Guide: A. Acronyms

3/24/2008 60

TRMM Tropical Rainfall Measuring Mission

